Expanding the Drug Target Universe Benjamin F. Cravatt, Ph.D. Norton B. Gilula Chair of Chemical Biology **The Department of Chemistry** The Scripps Research Institute ## My Journey to Scripps Where I grew up Scripps Research 1992-present **Dale Boger** Opportunity – to understand human physiological and disease processes at a molecular level Opportunity – to understand human physiological and disease processes at a molecular level #### **CRISPR** (gene editing) #### gene essentiality in cancer cell lines Challenge – human biology often directs researchers to currently "undruggable" targets Classical druggable protein (the past 50 years of pharma/biotech) **Undruggable protein** (today and the future) Challenge – human biology often directs researchers to currently "undruggable" targets Classical druggable protein (the past 50 years of pharma/biotech) **Undruggable protein** (today and the future) Challenge – human biology often directs researchers to currently "undruggable" targets The Problem: Disease diagnosis is far outpacing disease treatment – how do we fix this? ### **Overview** - Activity-based proteomics - Discovering drug candidates in living systems - Advancing covalent (permanent) chemistry with activity-based proteomics - Radically expanding the drug target universe ### **Overview** - Activity-based proteomics - Discovering drug candidates in living systems - Advancing covalent (permanent) chemistry with activity-based proteomics - Radically expanding the drug target universe ## How Have Drugs Typically Been Discovered for Disease Proteins? - One protein at a time - Wrong protein forms ("proteoforms")? - Wrong neighborhoods? ## Activity-Based Proteomics Provides a Near-Universal Assay for Drug Targets in Cells - Thousands of proteins at a time ("proteomics") - Right protein forms ("proteoforms") - Right neighborhoods ### **Overview** - Activity-based proteomics - Discovering drug candidates in living systems - Advancing covalent (permanent) chemistry with activity-based proteomics - Radically expanding the drug target universe ### **Exocannabinoids** △9-Tetrahydrocannabinol (THC) #### **Behavioral effects** - analgesia - anxiolytic - motor deficits - cognitive impairment ### **Exocannabinoids** △9-Tetrahydrocannabinol (THC) #### **Behavioral effects** - analgesia - anxiolytic - motor deficits - cognitive impairment ### **Exocannabinoids** △9-Tetrahydrocannabinol (THC) #### **Behavioral effects** - analgesia - anxiolytic - motor deficits - cognitive impairment H OH △9-Tetrahydrocannabinol (THC) #### **Behavioral effects** - analgesia - anxiolytic - motor deficits - cognitive impairment #### **Endocannabinoids** 2-Arachidonoyl glycerol (2-AG) H OH △9-Tetrahydrocannabinol (THC) #### **Behavioral effects** - analgesia - anxiolytic - motor deficits - cognitive impairment #### **Endocannabinoids** 2-Arachidonoyl glycerol (2-AG) ### Anandamide Inactivation is Regulated by Fatty Acid Amide Hydrolase (FAAH) Cell membrane ## Serendipitous Discovery of Inhibitors that Permanently Bind to FAAH (with Pfizer; 2005-2007) ## Most Drugs Bind Reversibly to Proteins atorvastatin/Lipitor™ (cardiovascular disease) sitagliptin/Januvia[™] (diabetes) ## Some Important Drugs Bind Permanently to Proteins - Serendipitous discoveries - Begrudgingly tolerated ## What is the Concern with Permanent Drugs? - Serendipitous discoveries - Begrudgingly tolerated penicillin V (bacterial infection) aspirin (pain, inflammation) ### **Evaluating Permanent FAAH Inhibitors by Activity-Based Proteomics** ### **Evaluating Permanent FAAH Inhibitors by Activity-Based Proteomics** ### FAAH Inhibitors in the Clinic – A Long and Winding Road # CAN ### Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo Jonathan Z. Long^a, Daniel K. Nomura^a, Robert E. Vann^b, D. Matthew Walentiny^b, Lamont Booker^b, Xin Jin^a, James J. Burston^b, Laura J. Sim-Selley^b, Aron H. Lichtman^b, Jenny L. Wiley^b, and Benjamin F. Cravatt^{a,1} **20270–20275** | PNAS | **December 1, 2009** | vol. 106 | no. 48 www.pnas.org/cgi/doi/10.1073/pnas.0909411106 2007-2009 2019-present ## BMS-986368 (FAAH/MAGL inhibitor) #### Indication #### Multiple Sclerosis Spasticity (MSS) #### Alzheimer's Disease Agitation (AAD) | Phase/Study | Phase II - BALANCE-MSS-1 | Phase II - BALANCE-AAD-1 | |---------------|---|--| | # of Patients | N = 200 | N = 120 | | Design | BMS-986368 Dose 1 BMS-986368 Dose 2 BMS-986368 Dose 3 Placebo | BMS-986368 Dose 1 BMS-986368 Dose 2 Placebo | | Endpoints | Primary: Change from Baseline in Numeric-transformed Modified Ashworth Scale-Most Affected Lower Limb (TNmAS-MALL) at week 6 Key secondary: Change from baseline on the numeric rating scale spasticity (NRS-S) score at week 6 Change from baseline on the MS spasticity scale (MSSS-88) total scores at week 6 | Primary: Change from Baseline in Cohen-Mansfield Agitation Inventory (CMAI) score up to Week 8 Key secondary: Neuropsychiatric Inventory Nursing Home Version (NPI-NH) total score up to week 8 NPI-NH agitation/aggression domain score up to week 8 | | Status | RecruitingProjected data readout 2026 | Recruiting Projected data readout 2027 | | CT Identifier | NCT06782490 | NCT06808984 | ## **Extending the Reach of Permanent Chemistry** ## **Extending the Reach of Permanent Chemistry** Ibrutinib (leukemia) Acalabrutinib (leukemia) Zanbrutinib (leukemia) Afatinib (lung cancer) Dacomitinib (lung cancer) Osimertinib (lung cancer) Neratinib (breast cancer) P(Futibatinib (cholangiocarcinoma) Ritlecitinib (alopecia) ## Most Drugs Bind Proteins with Deep Pockets; But Many Important Disease Proteins Lack Deep Pockets ## Most Drugs Bind Proteins with Deep Pockets; But Many Important Disease Proteins Lack Deep Pockets ## Addressing Challenging Proteins with Permanent Chemistry ## Extending the Reach of Permanent Chemistry (No cheat codes) ### Global Discovery of Permanent Chemistry by Activity-Based Proteomics Numerous proteins can be targeted at shallow/cryptic pockets with permanent chemistry Backus KM et al. Nature 2016 **Phil Baran** Jin-Quan Yu Tom Daniel Rich Heyman Covalent chemistry library (> 10,000 compounds) Industrialized screening (> 1000 samples/week) ## WRN Helicase – The "Not So" Long Road from Discovery to Drug Candidate in the Genome Era #### LETTER https://doi.org/10.1038/s41586-019-1102-x ### WRN helicase is a synthetic lethal target in microsatellite unstable cancers Edmond M. Chan^{1,2,12}, Tsukasa Shibue^{1,12}, James M. McFarland¹, Benjamin Gaeta¹, Mahmoud Ghandi¹, Nancy Dumont¹, Alfredo Gonzalez¹, Justine S. McPartlan¹, Tianxia Li², Yanxi Zhang², Jie Bin Liu², Jean-Bernard Lazaro³, Peili Gu⁴, Cortt G. Piett⁵, Annie Apffel¹, Syed O. Ali^{1,2}, Rebecca Deasy¹, Paula Keskula¹, Raymond W. S. Ng^{1,2}, Emma A. Roberts³, Elizaveta Reznichenko³, Lisa Leung¹, Maria Alimova¹, Monica Schenone¹, Mirazul Islam^{1,2}, Yosef E. Maruvka^{1,6}, Yang Liu^{1,2}, Jatin Roper⁷, Srivatsan Raghavan^{1,2}, Marios Giannakis^{1,2}, Yuen-Yi Tseng¹, Zachary D. Nagel^{1,5}, Alan D'Andrea³, David E. Root¹, Jesse S. Boehm¹, Gad Getz^{1,6}, Sandy Chang^{4,8,9}, Todd R. Golub^{1,10,11}, Aviad Tsherniak¹, Francisca Vazquez^{1,2,13*} & Adam J. Bass^{1,2,13*} 2019 25 APRIL 2019 | VOL 568 | NATURE | 551 #### Article Nature | Vol 629 | 9 May 2024 | 435 ## Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase https://doi.org/10.1038/s41586-024-07318-y Received: 19 October 2023 Accepted: 14 March 2024 Published online: 24 April 2024 Check for updates Kristen A. Baltgalvis¹, Kelsey N. Lamb¹, Kent T. Symons¹, Chu-Chiao Wu¹, Melissa A. Hoffman¹, Aaron N. Snead¹, Xiaodan Song¹, Thomas Glaza¹, Shota Kikuchi¹, Jason C. Green¹, Donald C. Rogness¹, Betty Lam¹, Maria E. Rodriguez-Aguirre¹, David R. Woody¹, Christie L. Eissler¹, Socorro Rodiles¹, Seth M. Negron¹, Steffen M. Bernard¹, Eileen Tran¹, Jonathan Pollock¹, Ali Tabatabaei¹, Victor Contreras¹, Heather N. Williams¹, Martha K. Pastuszka¹, John J. Sigler¹, Piergiorgio Pettazzoni², Markus G. Rudolph², Moritz Classen², Doris Brugger², Christopher Claiborne², Jean-Marc Plancher², Isabel Cuartas³, Joan Seoane³, Laurence E. Burgess³, Robert T. Abraham¹⁴, David S. Weinstein¹, Gabriel M. Simon¹, Matthew P. Patricelli¹¹⁸⁸, God M. Kinsella¹⁵⁸ 2024 Recruiting (i) A Study to Evaluate the Safety, Pharmacokinetics, and Anti-Tumor Activity of RO7589831 as Monotherapy and in Combination With Pembrolizumab in Participants With Advanced Solid Tumors ClinicalTrials.gov ID ① NCT06004245 Information provided by 1 Hoffmann-La Roche (Responsible Party) Sponsor 1 Hoffmann-La Roche Last Update Posted 1 2025-08-03 024 ## Vividion WRN Inhibitor – Initial Clinical Activity in Microsatellite Instability (MSI) Cancers https://x.com/mdandersonnews/status/1917642912948425008?s=42 ### Going Forward – Opportunities and Challenges Opportunity – Treating the diseases that we understand with innovations in chemistry #### **Inventing Catalysts for Editing C-H Bonds** Zhang, T.; Zhang, Z.-Y.; et al. Yu, J.-Q. Science 2024, 384, 793. Yu Lab Challenge – Better understanding diseases to know how to treat them #### **How to Predict Cryptic Druggable Pockets?** AI/ML Is Not (Yet) the Answer #### **CRBN** (Cereblon): - One well understood (orthosteric) pocket (IMiD) - Two cryptic (allosteric) pockets (C219 & C287) #### **How to Predict Cryptic Druggable Pockets?** #### AI/ML Is Not (Yet) the Answer #### **CRBN** (Cereblon): - One well understood (orthosteric) pocket (IMiD) - Two cryptic (allosteric) pockets (C219 & C287) #### AI/ML predictions: All allosteric ligands are placed in the orthosteric pocket: orthostery burnout? ### **Challenges Ahead** • A complete map of cryptic pockets in disease-relevant proteins **Ligand pocket Genetic variants** Our Lab's Achievements Are Entirely Due to Scripps ## Acknowledgements Minjin Yoo **Collaborators** Society, AACR, BMS, Janssen, Pfizer, Vividion, Gates **Lab members** **Garrett Lindsey** | Kim Masuda (lab manager) | Xuanmeng Luo | Phil Baran, Jin-Quan Yu, Michael Erb, (Scripps) | | |--|--|--|--| | Bruno Melillo (institute investigator) | Ben Pang | | | | Melissa Dix (staff scientist) | Aidan Pezacki | Jackie Blankman, Micah Niphakis (Abide) | | | Sabrina Barbas | Zack Potter | Gabe Simon, Matt Patricelli, Steffen
Bernard, Jonathan Pollock (Vividion) | | | Raymond Berkeley | Lingqi Qui | Kay Ahn, Doug Johnson (Pfizer) | | | Divya Bezwada | Chris Reinhardt | | | | Wieland Goetzke | Hermione Ren (w/ Shenvi) | Academic Mentors | | | Lauren Hargis (w/ Erb) | Logan Sigua (w/ Li) | | | | Hannah Hashimoto (w/ Yu) | Yongfeng Tao | Entrepreneur Mentors | | | Rachel Hayward | Jason Tse Tom Daniel, Rich Heyman, Paul Schim Tim Ware | | | | Nori Kaneshige | | | | | Arthur Kim (w/ Teijaro) | Yijun Xiong | | | | Haoxin Li | Elva Ye Research | h Support: NIH, NCI, NIDA, American Cancer | |