Expanding the Drug Target Universe

Benjamin F. Cravatt, Ph.D.

Norton B. Gilula Chair of Chemical Biology

The Department of Chemistry

The Scripps Research Institute

My Journey to Scripps

Where I grew up

Scripps
Research
1992-present

Dale Boger

Opportunity – to understand human physiological and disease processes at a molecular level

Opportunity – to understand human physiological and disease processes at a molecular level

CRISPR (gene editing)

gene essentiality in cancer cell lines

Challenge – human biology often directs researchers to currently "undruggable" targets

Classical druggable protein (the past 50 years of pharma/biotech)

Undruggable protein (today and the future)

Challenge – human biology often directs researchers to currently "undruggable" targets

Classical druggable protein (the past 50 years of pharma/biotech)

Undruggable protein (today and the future)

Challenge – human biology often directs researchers to currently "undruggable" targets

The Problem: Disease diagnosis is far outpacing disease treatment – how do we fix this?

Overview

- Activity-based proteomics
 - Discovering drug candidates in living systems
- Advancing covalent (permanent) chemistry with activity-based proteomics
 - Radically expanding the drug target universe

Overview

- Activity-based proteomics
 - Discovering drug candidates in living systems
- Advancing covalent (permanent) chemistry with activity-based proteomics
 - Radically expanding the drug target universe

How Have Drugs Typically Been Discovered for Disease Proteins?

- One protein at a time
- Wrong protein forms ("proteoforms")?
- Wrong neighborhoods?

Activity-Based Proteomics Provides a Near-Universal Assay for Drug Targets in Cells

- Thousands of proteins at a time ("proteomics")
- Right protein forms ("proteoforms")
- Right neighborhoods

Overview

- Activity-based proteomics
 - Discovering drug candidates in living systems
- Advancing covalent (permanent) chemistry with activity-based proteomics
 - Radically expanding the drug target universe

Exocannabinoids

△9-Tetrahydrocannabinol (THC)

Behavioral effects

- analgesia
- anxiolytic
- motor deficits
- cognitive impairment

Exocannabinoids

△9-Tetrahydrocannabinol (THC)

Behavioral effects

- analgesia
- anxiolytic
- motor deficits
- cognitive impairment

Exocannabinoids

△9-Tetrahydrocannabinol (THC)

Behavioral effects

- analgesia
- anxiolytic
- motor deficits
- cognitive impairment

H OH

△9-Tetrahydrocannabinol (THC)

Behavioral effects

- analgesia
- anxiolytic
- motor deficits
- cognitive impairment

Endocannabinoids

2-Arachidonoyl glycerol (2-AG)

H OH

△9-Tetrahydrocannabinol (THC)

Behavioral effects

- analgesia
- anxiolytic
- motor deficits
- cognitive impairment

Endocannabinoids

2-Arachidonoyl glycerol (2-AG)

Anandamide Inactivation is Regulated by

Fatty Acid Amide Hydrolase (FAAH)

Cell membrane

Serendipitous Discovery of Inhibitors that Permanently Bind to FAAH (with Pfizer; 2005-2007)

Most Drugs Bind Reversibly to Proteins

atorvastatin/Lipitor™ (cardiovascular disease)

sitagliptin/Januvia[™] (diabetes)

Some Important Drugs Bind Permanently to Proteins

- Serendipitous discoveries
- Begrudgingly tolerated

What is the Concern with Permanent Drugs?

- Serendipitous discoveries
- Begrudgingly tolerated

penicillin V (bacterial infection)

aspirin (pain, inflammation)

Evaluating Permanent FAAH Inhibitors by Activity-Based Proteomics

Evaluating Permanent FAAH Inhibitors by Activity-Based Proteomics

FAAH Inhibitors in the Clinic – A Long and Winding Road

CAN

Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo

Jonathan Z. Long^a, Daniel K. Nomura^a, Robert E. Vann^b, D. Matthew Walentiny^b, Lamont Booker^b, Xin Jin^a, James J. Burston^b, Laura J. Sim-Selley^b, Aron H. Lichtman^b, Jenny L. Wiley^b, and Benjamin F. Cravatt^{a,1}

20270–20275 | PNAS | **December 1, 2009** | vol. 106 | no. 48

www.pnas.org/cgi/doi/10.1073/pnas.0909411106

2007-2009

2019-present

BMS-986368 (FAAH/MAGL inhibitor)

Indication

Multiple Sclerosis Spasticity (MSS)

Alzheimer's Disease Agitation (AAD)

Phase/Study	Phase II - BALANCE-MSS-1	Phase II - BALANCE-AAD-1
# of Patients	N = 200	N = 120
Design	 BMS-986368 Dose 1 BMS-986368 Dose 2 BMS-986368 Dose 3 Placebo 	 BMS-986368 Dose 1 BMS-986368 Dose 2 Placebo
Endpoints	 Primary: Change from Baseline in Numeric-transformed Modified Ashworth Scale-Most Affected Lower Limb (TNmAS-MALL) at week 6 Key secondary: Change from baseline on the numeric rating scale spasticity (NRS-S) score at week 6 Change from baseline on the MS spasticity scale (MSSS-88) total scores at week 6 	 Primary: Change from Baseline in Cohen-Mansfield Agitation Inventory (CMAI) score up to Week 8 Key secondary: Neuropsychiatric Inventory Nursing Home Version (NPI-NH) total score up to week 8 NPI-NH agitation/aggression domain score up to week 8
Status	RecruitingProjected data readout 2026	 Recruiting Projected data readout 2027
CT Identifier	NCT06782490	NCT06808984

Extending the Reach of Permanent Chemistry

Extending the Reach of Permanent Chemistry

Ibrutinib (leukemia)

Acalabrutinib (leukemia)

Zanbrutinib (leukemia)

Afatinib (lung cancer)

Dacomitinib (lung cancer)

Osimertinib (lung cancer)

Neratinib (breast cancer)

P(Futibatinib (cholangiocarcinoma) Ritlecitinib (alopecia)

Most Drugs Bind Proteins with Deep Pockets; But Many Important Disease Proteins Lack Deep Pockets

Most Drugs Bind Proteins with Deep Pockets; But Many Important Disease Proteins Lack Deep Pockets

Addressing Challenging Proteins with Permanent Chemistry

Extending the Reach of Permanent Chemistry (No cheat codes)

Global Discovery of Permanent Chemistry by Activity-Based Proteomics

Numerous proteins can be targeted at shallow/cryptic pockets with permanent chemistry

Backus KM et al. Nature 2016

Phil Baran

Jin-Quan Yu Tom Daniel Rich Heyman

Covalent chemistry library (> 10,000 compounds)

Industrialized screening (> 1000 samples/week)

WRN Helicase – The "Not So" Long Road from Discovery to Drug Candidate in the Genome Era

LETTER

https://doi.org/10.1038/s41586-019-1102-x

WRN helicase is a synthetic lethal target in microsatellite unstable cancers

Edmond M. Chan^{1,2,12}, Tsukasa Shibue^{1,12}, James M. McFarland¹, Benjamin Gaeta¹, Mahmoud Ghandi¹, Nancy Dumont¹, Alfredo Gonzalez¹, Justine S. McPartlan¹, Tianxia Li², Yanxi Zhang², Jie Bin Liu², Jean-Bernard Lazaro³, Peili Gu⁴, Cortt G. Piett⁵, Annie Apffel¹, Syed O. Ali^{1,2}, Rebecca Deasy¹, Paula Keskula¹, Raymond W. S. Ng^{1,2}, Emma A. Roberts³, Elizaveta Reznichenko³, Lisa Leung¹, Maria Alimova¹, Monica Schenone¹, Mirazul Islam^{1,2}, Yosef E. Maruvka^{1,6}, Yang Liu^{1,2}, Jatin Roper⁷, Srivatsan Raghavan^{1,2}, Marios Giannakis^{1,2}, Yuen-Yi Tseng¹, Zachary D. Nagel^{1,5}, Alan D'Andrea³, David E. Root¹, Jesse S. Boehm¹, Gad Getz^{1,6}, Sandy Chang^{4,8,9}, Todd R. Golub^{1,10,11}, Aviad Tsherniak¹, Francisca Vazquez^{1,2,13*} & Adam J. Bass^{1,2,13*}

2019

25 APRIL 2019 | VOL 568 | NATURE | 551

Article

Nature | Vol 629 | 9 May 2024 | 435

Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase

https://doi.org/10.1038/s41586-024-07318-y Received: 19 October 2023

Accepted: 14 March 2024

Published online: 24 April 2024

Check for updates

Kristen A. Baltgalvis¹, Kelsey N. Lamb¹, Kent T. Symons¹, Chu-Chiao Wu¹, Melissa A. Hoffman¹, Aaron N. Snead¹, Xiaodan Song¹, Thomas Glaza¹, Shota Kikuchi¹, Jason C. Green¹, Donald C. Rogness¹, Betty Lam¹, Maria E. Rodriguez-Aguirre¹, David R. Woody¹, Christie L. Eissler¹, Socorro Rodiles¹, Seth M. Negron¹, Steffen M. Bernard¹, Eileen Tran¹, Jonathan Pollock¹, Ali Tabatabaei¹, Victor Contreras¹, Heather N. Williams¹, Martha K. Pastuszka¹, John J. Sigler¹, Piergiorgio Pettazzoni², Markus G. Rudolph², Moritz Classen², Doris Brugger², Christopher Claiborne², Jean-Marc Plancher², Isabel Cuartas³, Joan Seoane³, Laurence E. Burgess³, Robert T. Abraham¹⁴, David S. Weinstein¹, Gabriel M. Simon¹, Matthew P. Patricelli¹¹⁸⁸, God M. Kinsella¹⁵⁸

2024

Recruiting (i)

A Study to Evaluate the Safety, Pharmacokinetics, and Anti-Tumor Activity of RO7589831 as Monotherapy and in Combination With Pembrolizumab in Participants With Advanced Solid Tumors

ClinicalTrials.gov ID ① NCT06004245

Information provided by 1 Hoffmann-La Roche (Responsible Party)

Sponsor 1 Hoffmann-La Roche

Last Update Posted 1 2025-08-03

024

Vividion WRN Inhibitor – Initial Clinical Activity in Microsatellite Instability (MSI) Cancers

https://x.com/mdandersonnews/status/1917642912948425008?s=42

Going Forward – Opportunities and Challenges

 Opportunity – Treating the diseases that we understand with innovations in chemistry

Inventing Catalysts for Editing C-H Bonds

Zhang, T.; Zhang, Z.-Y.; et al. Yu, J.-Q. Science 2024, 384, 793.

Yu Lab

 Challenge – Better understanding diseases to know how to treat them

How to Predict Cryptic Druggable Pockets?

AI/ML Is Not (Yet) the Answer

CRBN (Cereblon):

- One well understood (orthosteric) pocket (IMiD)
- Two cryptic (allosteric) pockets (C219 & C287)

How to Predict Cryptic Druggable Pockets?

AI/ML Is Not (Yet) the Answer

CRBN (Cereblon):

- One well understood (orthosteric) pocket (IMiD)
- Two cryptic (allosteric) pockets (C219 & C287)

AI/ML predictions:

 All allosteric ligands are placed in the orthosteric pocket: orthostery burnout?

Challenges Ahead

• A complete map of cryptic pockets in disease-relevant proteins

Ligand pocket Genetic variants

Our Lab's Achievements Are Entirely Due to Scripps

Acknowledgements

Minjin Yoo

Collaborators

Society, AACR, BMS, Janssen, Pfizer, Vividion, Gates

Lab members

Garrett Lindsey

Kim Masuda (lab manager)	Xuanmeng Luo	Phil Baran, Jin-Quan Yu, Michael Erb, (Scripps)	
Bruno Melillo (institute investigator)	Ben Pang		
Melissa Dix (staff scientist)	Aidan Pezacki	Jackie Blankman, Micah Niphakis (Abide)	
Sabrina Barbas	Zack Potter	Gabe Simon, Matt Patricelli, Steffen Bernard, Jonathan Pollock (Vividion)	
Raymond Berkeley	Lingqi Qui	Kay Ahn, Doug Johnson (Pfizer)	
Divya Bezwada	Chris Reinhardt		
Wieland Goetzke	Hermione Ren (w/ Shenvi)	Academic Mentors	
Lauren Hargis (w/ Erb)	Logan Sigua (w/ Li)		
Hannah Hashimoto (w/ Yu)	Yongfeng Tao	Entrepreneur Mentors	
Rachel Hayward	Jason Tse Tom Daniel, Rich Heyman, Paul Schim Tim Ware		
Nori Kaneshige			
Arthur Kim (w/ Teijaro)	Yijun Xiong		
Haoxin Li	Elva Ye Research	h Support: NIH, NCI, NIDA, American Cancer	