

Decoding sugar messages to create new diagnostics and therapeutics

Mia Huang, PhD

Associate Professor miahuang@scripps.edu Scripps Research Chemistry

Scripps Research Molecular Medicine

Metro Manila, Philippines

voted second worst traffic in the world

worst city to drive in the world (BBC)

Mia Huang, Ph.D.

Associate Professor Department of Chemistry

- B.A. Chemistry, 2007 City University of New York Queens College
- Ph.D. Chemistry, 2012 New York University
- Postdoctoral Fellow, 2013 Yale University
- NIH Glycosciences Postdoc, 2018 UC San Diego
- Assistant Professor (2018-2021)
- Associate Professor (2022-) 2023 Alfred P. Sloan Research Fellowship in Chemistry 2023 David Y. Gin Investigator Award in Carbohydrate Chemistry 2021 Maximizing Investigators' Research Award, NIH

FRONT ROW

at Scripps Research

choosing chemistry, the central science

- Understand life at the molecular level
- Develop molecular solutions to intervene in disease
- Discover new applications
- Versatile biological knowledge

PhD work: biomimetic materials

sugars | glycans nutrition vs information

glycans are among the biomolecules of life

glycans are predominantly located at the cell surface

200 nm

8

Essentials of Glycobiology

as molecules located at the cell surface, glycans carry **messages** signaling the health and status of cells

glycans are data-rich informational molecules

Macromolecule	Building Block	Aproximate Mass	Possible Variations in a Trimer
Protein	Amino acids	125 → 10⁴-10⁵	6
Nucleic Acid	Nucleotides	330 → 10 ³ -10 ⁹	6
Carbohydrate	Monosaccharides	200 → 10²-10⁶	1,056 to 27,648!

glycan building blocks are depicted as colored symbols

SHAPE	White (Generic)	Blue	Green	Yellow	Orange	Pink	Purple	Light Blue	Brown	Red
Filled Circle	Hexose	Glc	Man	Gal	Gul	Alt	All	Tal	ldo	
Filled Square	HexNAc	GlcNAc	ManNAc	GalNAc	GulNAc	AltNAc	AllNAc	TalNAc	IdoNAc	
Crossed Square	Hexosamine	GicN	ManN	GalN	GulN	AltN	Alin	TalN	IdoN	
Divided Diamond	Hexuronate	GlcA	♦ ManA	GalA	© GulA	AltA	AllA	♦ TalA	⇔ IdoA	
Filled Triangle	Deoxyhexose	Qui	A Rha		6dGul	6dAlt		6dTal		Fuc
Divided Triangle	 DeoxyhexNAc	QuiNAc	A RhaNAc			6dAltNAc		6dTalNAc		L FucNAc
Flat Rectangle	Di-deoxyhexose	Oli	Tyv		Abe	Par	Dig	Col		
Filled Star	☆ Pentose		Ara	☆ Lyx	🚖 Xyl	☆ Rib				
Filled Diamond	Deoxynonulosonate		k dn				Neu5Ac	Neu5Gc	e Neu	♦ Sia
Flat Diamond	Di-deoxynonulosonate		◆ Pse	< ← Leg		🔶 Aci		4eLeg		
Flat Hexagon	Unknown	Bac	LDmanHep	C Kdo	D ha	DDmanHep	MurNAc	MurNGc	Mur	
Pentagon	Assigned	A pi	Fru	C Tag	Sor	Psi				

FRONT ROW

at Scripps Research

https://www.ncbi.nlm.nih.gov/glycans/snfg.html

glycan building blocks are assembled into other glycans with different messages

cell surface glycans dictate blood compatibility

cell surface glycans dictate blood compatibility

viruses are also coated with glycans!

"Ok, so they are everywhere, but does it mean they are important?"

Verheijen (2019) Genetics in Medicine

errors in the cellular production or removal of glycans lead to congenital disorders of glycosylation

changes in glycan abundance and composition accompany cancers and their progression

Gill (2016) Histochemistry & Cell Biology

Hemagglutinin open-umbrella (HA) 300-1000 copies 156, 159, 189 192, 193, 196 Ga 186, 187, GICNA 189, 190 ---> folded-umbrella Neu5Ac 190, 222 225, 226 137, 145 190.226 Chandrasekaran A. et al. Nat 228 Biotech. (2008) 26:107.

viruses can evolve to recognize human glycans for infection

(a2-3) 3'-sialyllactose

NOBELPRISET I KEMI 2022 THE NOBEL PRIZE IN CHEMISTRY 2022

Carolyn R. Bertozzi Stanford University USA

Morten Meldal University of Copenhagen Denmark

K. Barry Sharpless Scripps Research USA

"för utveckling av klickkemi och bioortogonal kemi"

"for the development of click chemistry and bioorthogonal chemistry"

#nobelprize

"Ok, so glycans are everywhere, and they seem to be changing in health and disease.

How come we haven't heard about them before?"

glycan abundance and composition are difficult to predict from the central dogma

there is extreme informational complexity in glycans

we appreciate complexity

we appreciate complexity

when equipped with the right tools, training, and environment

analytics

state of the art instrumentation & bioinformatics

chemical expertise

we appreciate complexity

when equipped with the right tools, training, and environment

Sharpless Nobel Prize in Chemistry Announcement | October 2022

we appreciate complexity

when equipped with the right tools, training, and environment

our strategy connecting proteins with glycans

our strategy

connecting proteins with glycans

our strategy

connecting proteins with glycans

discover changes in protein glycosylation

define how & why protein glycosylation is changing

exploit change in protein glycosylation

discover changes in protein glycosylation

use glycan-binding proteins as message decoders

GBP: glycan-binding protein

Joeh et al., Mapping glycan-mediated galectin-3 interactions by live cell proximity labeling. PNAS (2020) 117:27329.

galectin-3 is a glycan-binding protein necessary in hepatic fibrosis

Henderson NC, et al. PNAS (2006) 103:5060. Iredale. J Clin Invest (2007) 117:539. Battaler, Brenner. J Clin Invest (2005) 115:209 Tsuchida T, Friedman SL. Nat Rev (2017) 14:397.

proximity labeling of live hepatic stellate cells

Joeh et al., Mapping glycan-mediated galectin-3 interactions by live cell proximity labeling. PNAS (2020) 117:27329.

Joeh et al., Mapping glycan-mediated galectin-3 interactions by live cell proximity labeling. PNAS (2020) 117:27329.

define how & why protein glycosylation is changing

at Scripps Research

exploit change in protein glycosylation

antibodies and small molecules expedite detection and targeting

3

cancers are

lethal

pancreatic ductal adenocarcinoma (PDAC)

Hosein (2020) Nat Rev Gastroenterol Hepatol

stromal cancers are lethal and are not efficiently served by current therapies

pancreatic ductal adenocarcinoma (PDAC)

most anticancer therapies target only cancer cells, but the tumor stroma promotes resistance to these therapies

Valkenburg (2018) Nat Rev Clinical Oncology

proteoglycans in the stroma shield tumors from attack and create signals that tells cancer cells to grow excessively

*tumor and fibroblast cells

proteoglycans are pathogenically abundant in metastasic cancers

Gill (2016) Histochemistry & Cell Biology

Stage I

Cancer tissue types: pancreatic ductal adenocarcinoma (PDAC): Draetta Nature 2018 | Triple Negative Breast Cancer | Multiple Myeloma (Rapraeger, Sanderson) | Prostate Cancer

normal

SUMMARY

Glycans are a fascinating set of informational biomolecules

Glycan patterns are changed in disease

Detection of changes in glycan patterns requires invention of techniques

Studying protein glycosylation may enable precision diagnostics and therapeutic avenues

Thank you!

Your support gives us momentum to keep pushing the boundaries of science to impact biomedicine.

